Matemáticas

Frase célebre 1: "Después de todo, ¿qué es la matemática sino la poesía de la mente, y qué es la poesía sino la matemática del corazón?". DAVID EUGENE SMITH. (1860—1944). Matemático estadounidense, educador, coleccionista, editor e historiador de las matemáticas. Frase célebre 2 : "Quizá lo más extraño de la ciencia moderna sea su regreso al Pitagorismo". Bertrand RUSSELL. (1872-1970). Matemático, Lógico, Filósofo, etc. Frase célebre 3: "Las Matemáticas son tanto un aspecto de la Cultura como una colección de algoritmos". C.B. BOYER (1906-1976). History of the Calculus and its conceptual development. Dover, New York. 1949. Frase célebre 4: "Conferimos a las ciencias matemáticas el poder dialéctico de ascender de la caverna a la luz, de lo visible a lo inteligible, de los sentidos a la esencia, por medio de la inteligencia". PLATÓN. República (532c). Frase célebre 5: "El poder que mueve la invención matemática no es (solo) el razonamiento sino la imaginación". AUGUSTUS DE MORGAN (1806−1871). Matemático y lógico británico nacido en la India. Frase célebre 6: "EL LIBRO DE LA NATURALEZA ESTÁ ESCRITO EN LENGUAJE MATEMÁTICO". GALILEO GALILEI (1564–1642), EL PADRE DEL MÉTODO CIENTÍFICO. Frase célebre 7: “Muchas personas que no han estudiado MATEMÁTICAS las consideran una ciencia árida e infructuosa. En realidad, sin embargo, es una CIENCIA que requiere un gran dosis de IMAGINACIÓN.” Sofia Kovalévskaya (1850-1891). Matemática rusa. Frase célebre 8: "La Matemática es la reina de las ciencias y la Aritmética es la reina de las Matemáticas". JOHANN CARL FRIEDRICH GAUSS (1777–1855). Matemático, Astrónomo, Geodesta, y Físico alemán. Frase célebre 9: "El número es el lazo de unión de la eterna persistencia de las cosas". PLATÓN. Timeo. Frase célebre 10: "La matemática ha avanzado más por aquellos que se distinguieron por su intuición que por pruebas rigurosas". Félix KLEIN. (1849-1925). Matemático alemán de gran trascendencia teórica, histórica y metodológica. Frase célebre 11: "Las matemáticas puras son, a su manera, la poesía de las ideas lógicas". Albert EINSTEIN (1879–1955).

La Hipótesis del Continuo de Cantor ¿Cuál es el cardinal del continuo?

La Hipótesis del Continuo de Cantor ¿Cuál es el cardinal del continuo?
¿ (En la actualidad) Estamos cerca de una solución del problema del cardinal del conjunto de los números reales ? ¿Estamos cerca de saber cuál es dicho cardinal o falta mucho todavía? Los intentos por determinar la cardinalidad del conjunto de los números reales (el cardinal del continuo) han contribuido sustancialmente con el desarrollo de la Teoría de Conjuntos. Hacia 1878 G. Cantor conjeturó que tal cardinal es el menor cardinal mayor que el cardinal de los números naturales (Alef_0), es decir, Alef_1. Esta hipótesis se denomina Hipótesis del continuo (HC) y Cantor no pudo demostrar la misma. Para David Hilbert la HC era tan importante que la colocó de primera en la lista de problemas presentada al Congreso Internacional de Matemáticas realizado en París en 1900; y uno de los resultados más destacados al respecto es la prueba de su independencia de los axiomas estándar de la Teoría de Conjuntos, la cual se debe a K. Gödel (1938) y a P. Cohen (1963-64), es decir, tales autores demostraron que si los axiomas estándar de la Teoría de Conjuntos son consistentes, entonces no se puede deducir de ellos la HC, ni la negación de la HC. Considerando esta independencia y además que (desde un punto de vista platonista) la HC es una proposición significativa la cual es verdadera o falsa, una de las investigaciones actuales más relevantes sobre el tema consiste en la búsqueda de nuevos axiomas que permitan decidir el cardinal del continuo. Vale la pena destacar que algunos de los candidatos a nuevos axiomas dicen que Cantor estaba equivocado, pues ellos implican que el cardinal del continuo es Alef_2, el menor cardinal mayor que Alef_1 (Gödel había intuido este resultado años antes). ¿ Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964) ? Intentos de responder esta pregunta pueden encontrarse en los artículos del Prof. José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", del Prof. Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y del Prof. Joan Bagaria, "Natural axioms of set and the continuum problem" , que se encuentran en la biblioteca digital de este blog que aparecerá al hacer clic en la imagen. También se puede encontrar más información al respecto en dicha biblioteca, en las otras bibliotecas digitales referidas en este blog y en una entrada específica de este blog dedicada al tema (por favor leer esta entrada de primero). Y también en la siguiente entrada web ("The Continuum Hypothesis") de la Enciclopedia de Filosofía de la Universidad de Stanford existe información importante y actualizada al respecto: https://plato.stanford.edu/entries/continuum-hypothesis/

Cardinales grandes

Cardinales grandes
En este blog existe una entrada referida a este tema donde se colocan algunas referencias clásicas. Hacer clic sobre la imagen para tener acceso a dicha entrada.

Matemática aplicada

Matemática aplicada
Matemática Aplicada. Esquema del "Proceso de Modelación Matemática". Es muy interesante el tema de las aplicaciones de la matemática (en todas sus ramas) a las ciencias naturales y sociales. Hacer clic sobre la imagen para ver un video de youtube que presenta un resumen de diversas aplicaciones de la matemática a las ciencias, el video es del canal "EduMates". También en el siguiente video de youtube se puede ver una interesante entrevista al profesor de matemáticas Marcus du Sautoy realizada por Eduar Punset, en la cual el profesor Marcus habla sobre el tema de la aplicación matemática, el video se llama "Las Simetrías del Universo": https://www.youtube.com/watch?v=jegmxU9YS-s Un ejemplo de cómo crear un modelo matemático usando Ecuaciones Diferenciales (video de youtube del canal "MateFacil") es el siguiente: https://www.youtube.com/watch?v=V9UE2QmnDjw Otro ejemplo se puede ver en el siguiente video de youtube de "MateFacil": https://www.youtube.com/watch?v=WgWcxansYCs&t=18s Y otro ejemplo se puede ver en el siguiente video de youtube del canal "Matemáticas y física con tilde": https://www.youtube.com/watch?v=jXVJJoFTbeQ Es conocido que en internet (por ejemplo en "youtube") se pueden encontrar muchos otros videos tutoriales con ejemplos de aplicaciones matemáticas (de todas las ramas de las matemáticas). En el siguiente video de youtube se puede ver dos ejemplos de modelos (o fenómenos) estocásticos o probabilísticos: https://www.youtube.com/watch?v=8hHevhITp-c . En la biblioteca digital de este blog se pueden conseguir algunos libros con diferentes aplicaciones matemáticas.

miércoles, 1 de marzo de 2023

Las 17 ecuaciones que cambiaron la historia.

"Una ecuación es una igualdad matemática formada por dos expresiones que contienen una o más incógnitas que pueden despejarse (resolverse) a través de una sucesión de operaciones matemáticas. Dicho así, habrá muchos que levanten una ceja en señal de incomprensión o duda y maldigan para sus adentros ese antiguo enemigo de la época escolar que son las matemáticas. Esta es, probablemente, una de las ciencias formales más incomprendidas por la sociedad y sin embargo más básicas para comprender el mundo que nos rodea y el universo en que habitamos. Las matemáticas son el engranaje central que hace que giren todos los demás elementos que forman el cosmos. Sin esa ciencia abstracta, no hubiese sido posible desarrollar o comprobar gran parte del conocimiento que tenemos en otros campos como la física, la química, la ingeniería e incluso la medicina y las ciencias sociales. Las leyes de la naturaleza y las leyes artificiales son expresiones de un fenómeno explicadas por las matemáticas para que el ser humano las pueda comprender (o al menos intentarlo). Lo que a primera vista no es más que una sucesión de letras, números y símbolos que suponemos que tienen un orden determinado, esconde en realidad las respuestas a preguntas que la humanidad lleva planteándose desde hace mucho tiempo. Tal vez esas ecuaciones sean desconocidas para aquellas personas que no estudian el campo correspondiente o que no tienen un verdadero interés por el tema, pero una rápida búsqueda en Internet o en un libro hará que nombres como Pitágoras, Newton, Maxwell o Einstein comiencen a sonarnos de forma lejana. La llamada “cultura popular” hace que estos nombres sean reconocibles en casi cualquier parte del mundo, aunque no todos podamos comprender en qué consistió el trabajo de estos genios de su tiempo. Con el objetivo de hacer un poco más accesible el trabajo de matemáticos, físicos o ingenieros el científico Ian Stewart ha reunido un listado con algunas de las ecuaciones que cambiaron el mundo".... Para continuar leyendo el artículo abrir el siguiente enlace de la web https://www.muyinteresante.es/ciencia/2184.html?fbclid=IwAR1X_hnwnT_lzbUMUl1VXLh2L1__sZgeuZmr-X3_8CMimiT1J5w1UV963t8 , aunque aquí se presentará textualmente lo que resta de dicho artículo en su totalidad, a continuación se mencionan las 17 ecuaciones con las imágenes y comentarios respectivos que aparecen en el artículo:

1. "El Teorema de Pitágoras" (h 550 a.C.)
El teorema de Pitágoras lidera la lista de las 17 ecuaciones que han cambiado el mundo. Formulada en el año 530 antes de Cristo por Pitágoras, en ella se describe la relación entre los lados de un triángulo rectángulo en una superficie plana, conceptos esenciales para la comprensión de la geometría. Gracias a él se conectó el álgebra y la geometría.

2. "Logaritmos de John Napier" (1510).
En el segundo puesto de las 17 ecuaciones que han cambiado la historia se encuentran los “logaritmos” descritos en 1610 por John Napier. Gracias a los logaritmos y hasta el desarrollo de los ordenadores, esta base de cálculo fue la más rápida para multiplicar grandes cantidades ya que permitió simplificar operaciones muy complejas.

3. "El Cálculo de Isaac Newton" (1668)
El tercer puesto de las 17 ecuaciones que han cambiado nuestro mundo lo ocupa la base del cálculo, la “fórmula de la definición de la derivada en cálculo”. Descrita por Isaac Newton en 1668, esta ecuación ayudó a comprender el cambio de las funciones cuando sus variables cambiaban.

4. "La ley de la gravedad de Isaac Newton" (1687)
El cuarto puesto es para la “ley de la gravedad”. Formulada en 1687 por Isaac Newton, esta ecuación no solo explicaba este fenómeno físico sino que ayudó a comprender el funcionamiento de la gravedad a nivel de todo el universo, unificando en una sola ecuación fenómenos aparentemente tan diferentes como la caída de una manzana y las órbitas de los planetas.

5. "La raíz cuadrada de -1 de Leonhard Euler" (1750)
Seguimos con la “raíz cuadrada de -1”. Leonhard Euler describió esta ecuación en 1750 y dio lugar a los números complejos, esencial para resolver muchos problemas.

6. "La fórmula de los poliedros de Euler" (1751)
En el 6º puesto de las 17 ecuaciones que han cambiado el mundo también se encuentra otra fórmula de Euler. En este caso la “fórmula de los poliedros”, versiones tridimensionales de polígonos como el cubo. La topología nacería gracias a esta ecuación. Fue descrita en 1751.

7. "La Distribución Normal de Carl F. Gauss" (1810)
En el puesto nº 7 de las 17 ecuaciones que han cambiado la historia se encuentra la “distribución normal”, una ecuación empleada tanto en biología como en física para modelar propiedades. Por ejemplo, describe el comportamiento de grandes grupos de procesos independientes. La ecuación fue formulada en 1810 por Carl Friedrich Gauss, el llamado “Príncipe de las Matemáticas” y es uno de los pilares de la estadística.

8. "La ecuación de onda de Jean le Rond d'Alembert" (1746)
La siguiente ecuación que ha cambiado nuestro mundo es la “ecuación de onda” (1746) de Jean le Rond d'Alembert, que no es sino una ecuación diferencial que describe cómo una propiedad está cambiando a través del tiempo en términos de derivado de esa propiedad; esto es, describe la propagación de una variedad de ondas, como las ondas sonoras, las ondas de luz y las ondas en el agua, lo que ayudó enormemente en los campos como el electromagnetismo, la acústica o la dinámica de fluidos, unificando fenómenos tan dispares como la luz, el sonido o los terremotos.

9. "La Transformada de Fourier" de Jean-Baptiste Fourier (1822)
En el puesto nº 9 de las 17 ecuaciones que han cambiado el curso de la historia se encuentra la “transformada de Fourier”. Jean-Baptiste Joseph Fourier formuló en 1822 esta ecuación que los expertos consideran imprescindible para la comprensión de las estructuras de onda más complejas como puede ser el propio lenguaje humano (esencial en el tratamiento de señales).

10. "Las ecuaciones de Navier-Stokes" (1845)
El 10º puesto de las 17 ecuaciones que han cambiado el mundo lo ocupan las “ecuaciones de Navier-Stokes”. Claude-Louis Henri Navier y George Gabriel Stokes describieron esta ecuación en 1845 para explicar la mecánica de fluidos, con increíbles implicaciones en el mundo de la ingeniería. Es la base de la aerodinámica y la hidrodinámica.

11. "Las ecuaciones de Maxwell" (1863)
En el puesto nº 11 de las 17 ecuaciones que han cambiado el curso de la historia se encuentran las “ecuaciones de Maxwell”, que describen por completo los fenómenos electromagnéticos, el comportamiento y la relación entre la electricidad y el magnetismo. En origen se trataba de 20 ecuaciones pero finalmente fueron unificadas en 4. El responsable de tal avance fue James Clerk Maxwell en 1863.

12. "La segunda ley de la termodinámica de Ludwig Boltzmann" (1874)
El siguiente puesto lo ostenta la “segunda ley de la termodinámica” de Ludwig Boltzmann. Formulada en 1874, esta ecuación indica que, en un sistema cerrado, la entropía es siempre constante o creciente. Se trata de una de las leyes más importantes de la física y expresa que “la cantidad de entropía del universo tiende a incrementarse en el tiempo”.

13. "La Teoría de la Relatividad de Albert Einstein" (1905)
El puesto nº 13 es probablemente una de las ecuaciones más conocidas de la historia. Se trata de la “teoría de la relatividad” de Albert Einstein. Formulada en 1905, esta archiconocida ecuación cambiaría radicalmente el curso de la física. Así, esta ecuación, por la que Einstein será recordado para siempre, demostró que la masa y la energía eran simplemente dos caras de la misma moneda.

14. "La ecuación de Schrodinger" (1927)
Nos acercamos al final, y en el puesto 14 tenemos la “ecuación de Schrodinger”. Formulada en 1927 por Erwin Schrödinger, describe la evolución temporal de una partícula masiva no relativista. Así, el espacio no está vacío y cuando una partícula lo atraviesa, la deforma, y el espacio también genera una forma de onda por esta perturbación. La ecuación representa la probabilidad de que en un tiempo determinado se encuentre allí la partícula en las coodenadas X,Y y Z del espacio. En definitiva, describe la evolución de un sistema cuántico.

15. "La Teoría de la información" (1949)
En el puesto nº 15 de las 17 ecuaciones que han cambiado el curso de la historia tenemos la “teoría de la información”, que mide el contenido de información de un mensaje y describe el límite hasta el que se puede comprimir la información. El responsable de esta ecuación fue Claude Elwood Shannon y la fórmula data de 1949.

16. "La Teoría del Caos de Robert May" (1975)
El 16º puesto será conocido por muchos debido a la importancia que esta ecuación tiene en el libro 'Parque Jurásico' de Michael Crichton: la “teoría del caos” de Robert May. Formulada en 1975, la teoría del caos es un campo de estudio en matemáticas, con aplicaciones en varias disciplinas como la física, la ingeniería, la economía o la biología. La teoría del caos estudia el comportamiento de los sistemas dinámicos que son altamente sensibles a las condiciones de origen, un efecto que se conoce popularmente como el efecto mariposa.

17. "La ecuación Black-Scholes" (1990)
En el último puesto de las 17 ecuaciones que han cambiado la historia se encuentra la más reciente, la “ecuación Black-Scholes”, que permite a los profesionales de las finanzas valorar derivados financieros. Fue formulada en 1990 por Fisher Black y Myron Scholes y se aplica a las opciones, que son acuerdos para comprar o vender una cosa a un precio específico en una fecha futura determinada.

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.