Matemáticas

Frase célebre 1: "Después de todo, ¿qué es la matemática sino la poesía de la mente, y qué es la poesía sino la matemática del corazón?". DAVID EUGENE SMITH. (1860—1944). Matemático estadounidense, educador, coleccionista, editor e historiador de las matemáticas. Frase célebre 2 : "Quizá lo más extraño de la ciencia moderna sea su regreso al Pitagorismo". Bertrand RUSSELL. (1872-1970). Matemático, Lógico, Filósofo, etc. Frase célebre 3: "Las Matemáticas son tanto un aspecto de la Cultura como una colección de algoritmos". C.B. BOYER (1906-1976). History of the Calculus and its conceptual development. Dover, New York. 1949. Frase célebre 4: "Conferimos a las ciencias matemáticas el poder dialéctico de ascender de la caverna a la luz, de lo visible a lo inteligible, de los sentidos a la esencia, por medio de la inteligencia. Por estas Artes puede elevarse la mejor parte del alma a la contemplación del mejor de los seres: el Bien." PLATÓN. República (532c). Frase célebre 5: "El poder que mueve la invención matemática no es (solo) el razonamiento sino la imaginación". AUGUSTUS DE MORGAN (1806−1871). Matemático y lógico británico nacido en la India. Frase célebre 6: "EL LIBRO DE LA NATURALEZA ESTÁ ESCRITO EN LENGUAJE MATEMÁTICO". GALILEO GALILEI (1564–1642), EL PADRE DEL MÉTODO CIENTÍFICO. Frase célebre 7: “Muchas personas que no han estudiado MATEMÁTICAS las consideran una ciencia árida e infructuosa. En realidad, sin embargo, es una CIENCIA que requiere un gran dosis de IMAGINACIÓN.” Sofia Kovalévskaya (1850-1891). Matemática rusa. Frase célebre 8: "La Matemática es la reina de las ciencias y la Aritmética es la reina de las Matemáticas". JOHANN CARL FRIEDRICH GAUSS (1777–1855). Matemático, Astrónomo, Geodesta, y Físico alemán. Frase célebre 9: "El número es el lazo de unión de la eterna persistencia de las cosas". PLATÓN. Timeo. Frase célebre 10: "La matemática ha avanzado más por aquellos que se distinguieron por su intuición que por pruebas rigurosas". Félix KLEIN. (1849-1925). Matemático alemán de gran trascendencia teórica, histórica y metodológica. Frase célebre 11: "Las matemáticas puras son, a su manera, la poesía de las ideas lógicas". Albert EINSTEIN (1879–1955). Frase cálebre 12: "Aunque no nos está permitido penetrar en los misterios íntimos de la naturaleza y, a partir de ahí, conocer las verdaderas causas de los fenómenos, sin embargo, puede ocurrir que una cierta hipótesis ficticia baste para explicar muchos fenómenos". Leonhard Euler (1707-1783). Matemático y Físico. [Cita de la semana de Real Sociedad Matemática Española (RSME), Boletín semanal, 25-09-2024].

La Hipótesis del Continuo de Cantor ¿Cuál es el cardinal del continuo?

La Hipótesis del Continuo de Cantor ¿Cuál es el cardinal del continuo?
¿ (En la actualidad) Estamos cerca de una solución del problema del cardinal del conjunto de los números reales ? ¿Estamos cerca de saber cuál es dicho cardinal o falta mucho todavía? Los intentos por determinar la cardinalidad del conjunto de los números reales (el cardinal del continuo) han contribuido sustancialmente con el desarrollo de la Teoría de Conjuntos. Hacia 1878 G. Cantor conjeturó que tal cardinal es el menor cardinal mayor que el cardinal de los números naturales (Alef_0), es decir, Alef_1. Esta hipótesis se denomina Hipótesis del continuo (HC) y Cantor no pudo demostrar la misma. Para David Hilbert la HC era tan importante que la colocó de primera en la lista de problemas presentada al Congreso Internacional de Matemáticas realizado en París en 1900; y uno de los resultados más destacados al respecto es la prueba de su independencia de los axiomas estándar de la Teoría de Conjuntos, la cual se debe a K. Gödel (1938) y a P. Cohen (1963-64), es decir, tales autores demostraron que si los axiomas estándar de la Teoría de Conjuntos son consistentes, entonces no se puede deducir de ellos la HC, ni la negación de la HC. Considerando esta independencia y además que (desde un punto de vista platonista) la HC es una proposición significativa la cual es verdadera o falsa, una de las investigaciones actuales más relevantes sobre el tema consiste en la búsqueda de nuevos axiomas que permitan decidir el cardinal del continuo. Vale la pena destacar que algunos de los candidatos a nuevos axiomas dicen que Cantor estaba equivocado, pues ellos implican que el cardinal del continuo es Alef_2, el menor cardinal mayor que Alef_1 (Gödel había intuido este resultado años antes). ¿ Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964) ? Intentos de responder esta pregunta pueden encontrarse en los artículos del Prof. José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", del Prof. Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y del Prof. Joan Bagaria, "Natural axioms of set and the continuum problem" , que se encuentran en la biblioteca digital de este blog que aparecerá al hacer clic en la imagen. También se puede encontrar más información al respecto en dicha biblioteca, en las otras bibliotecas digitales referidas en este blog y en una entrada específica de este blog dedicada al tema (por favor leer esta entrada de primero). Y también en la siguiente entrada web ("The Continuum Hypothesis") de la Enciclopedia de Filosofía de la Universidad de Stanford existe información importante y actualizada al respecto: https://plato.stanford.edu/entries/continuum-hypothesis/

Cardinales grandes

Cardinales grandes
En este blog existe una entrada referida a este tema donde se colocan algunas referencias clásicas. Hacer clic sobre la imagen para tener acceso a dicha entrada.

Matemática aplicada

Matemática aplicada
Matemática Aplicada. Esquema del "Proceso de Modelación Matemática". Es muy interesante el tema de las aplicaciones de la matemática (en todas sus ramas) a las ciencias naturales y sociales. Hacer clic sobre la imagen para ver un video de youtube que presenta un resumen de diversas aplicaciones de la matemática a las ciencias, el video es del canal "EduMates". También en el siguiente video de youtube se puede ver una interesante entrevista al profesor de matemáticas Marcus du Sautoy realizada por Eduar Punset, en la cual el profesor Marcus habla sobre el tema de la aplicación matemática, el video se llama "Las Simetrías del Universo": https://www.youtube.com/watch?v=jegmxU9YS-s Un ejemplo de cómo crear un modelo matemático usando Ecuaciones Diferenciales (video de youtube del canal "MateFacil") es el siguiente: https://www.youtube.com/watch?v=V9UE2QmnDjw Otro ejemplo se puede ver en el siguiente video de youtube de "MateFacil": https://www.youtube.com/watch?v=WgWcxansYCs&t=18s Y otro ejemplo se puede ver en el siguiente video de youtube del canal "Matemáticas y física con tilde": https://www.youtube.com/watch?v=jXVJJoFTbeQ Es conocido que en internet (por ejemplo en "youtube") se pueden encontrar muchos otros videos tutoriales con ejemplos de aplicaciones matemáticas (de todas las ramas de las matemáticas). En el siguiente video de youtube se puede ver dos ejemplos de modelos (o fenómenos) estocásticos o probabilísticos: https://www.youtube.com/watch?v=8hHevhITp-c . En la biblioteca digital de este blog se pueden conseguir algunos libros con diferentes aplicaciones matemáticas.

domingo, 25 de diciembre de 2022

ISAAC NEWTON (1642–1727), matemático, físico, etc. Y el Cálculo (Diferencial e Integral).

(Fuente del artículo divulgativo: Facebook del Prof. de Matemáticas Pedro Miguel González Urbaneja. Fecha: 25-11-2022.)



ISAAC NEWTON (1642–1727), matemático y físico, celebérrimo y grande entre los grandes, pero también filósofo, teólogo, inventor y alquimista inglés.

● NACIÓ UN 25 DE DICIEMBRE DEL CALENDARIO JULIANO. El reino de Inglaterra no aceptó el CALENDARIO GREGORIANO HASTA 1752. En este calendario NEWTON habría nacido el 4 de enero de 1643. ► «Lo que sabemos es una gota de agua; lo que ignoramos es el océano». ► «Vive tu vida como una exclamación en lugar de una explicación». ► «Los Hombres construimos demasiados muros y no suficientes puentes». ► «La gravedad explica el movimiento de los planetas, pero no puede explicar quién establece los planetas en movimiento» ► «Si yo he visto más allá, es porque logré auparme sobre hombros de gigantes».
i>
ISAAC NEWTON. ★ EN UN ANIVERSARIO DE ISAAC NEWTON. BREVE SEMBLANZA DEL GIGANTE ENTRE LOS GIGANTES.

● Texto tomado del libro "EL ROSTRO HUMANO DE LAS MATEMÁTICAS". Ediciones Nivola. Madrid, 2008, pág.45, escrito por Pedro Miguel González Urbaneja.

● Ilustración del artista Gerardo Basabe Pérez de Viñaspre. ► «Newton extendió el imperio de todas las ciencias mediante leyes matemáticas que enseñaban a leer la naturaleza y el universo. Un consenso unánime sitúa al sabio en la cumbre de la ciencia, como el más grande entre los grandes. Niño reflexivo y lector infatigable, que diseñaba ingeniosos juguetes mecánicos y tomaba notas de cuanto observaba, Newton no tuvo una infancia feliz; creció solitario, tímido y suspicaz y vivió siempre soltero. Tuvo que pagarse los estudios con servicios domésticos de portero y cocinero en el colegio. Con ingente capacidad de observación, concentración, reflexión, cálculo, estudio y trabajo, Newton adquiere una sólida formación científica en múltiples teorías de Química, Física, Óptica, Matemática, … –a las que en edad precoz ya dará un impulso definitivo– que habían iniciado científicos anteriores, a quienes considera gigantes sobre cuyos hombros se aupará para buscar un hilo conductor y un programa que transforma los frutos de la época en la síntesis coherente de grandes teorías unitarias. Así surge la Gravitación Universal de los Principia –tal vez el más importante texto científico–, integración orgánica y ordenación matemática de las doctrinas de Copérnico, Kepler y Galileo, bajo las tres leyes fundamentales de la dinámica que unifican las leyes del movimiento terrestre y celeste. Así alumbra también el Cálculo Infinitesimal, separando la ganga geométrica de los casos particulares de problemas de áreas y tangentes de los grandes matemáticos (Arquímedes, Fermat, Pascal, Wallis, Barrow,…) para encontrar el principio general y destilar un algoritmo de validez universal. El Cálculo de Newton tiene una orientación cinemática; fluente es la cantidad que varía con el tiempo y fluxión la velocidad de cambio, y utiliza las series infinitas para extender el cálculo fluxional por derivación término a término. En la Integración, sustituye la concepción secular del área como suma infinita de infinitesimales por la razón de cambio del área respecto de la abscisa, y calcula el área por antiderivación, señalando, por vez primera, el carácter inverso de cuadraturas y tangentes. Newton fue honrado con numerosos honores: presidente de la Royal Society, miembro del Parlamento Británico y Director de la Casa de la Moneda. Fue enterrado en la abadía de Westminster entre los más insignes personajes ingleses».
El siguiente artículo está muy conectado al tema: "ARQUÍMEDES EN LA HISTORIA DE LA CULTURA (8). Genio e ingenio al servicio de las Matemáticas. (4) La influencia de Arquímedes en la génesis del Cálculo Integral". Autor: Profesor de Matemáticas Pedro Miguel González Urbaneja. El enlace para acceder al mismo es el siguiente: https://plazabierta.com/arquimedes-en-la-historia-de-la-cultura-8/

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.